Tribhuvan University Institute of Science and Technology

2077

Bachelor Level / First Year/ First Semester/ Science Computer Science and Information Technology (CSc. 111) (Digital Logic)

Full Marks: 60

Pass Marks: 24

Time: 3 hours.

(NEW COURSE)

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt any two questions:

 $(2 \times 10 = 20)$

1. Design a combinatorial circuit that generates 9's complement of a BCD number.

(10)

2. Implement the following functions using PLA

(10)

 $W(A, B, C, D) = \sum (2,12,13)$

 \times (A, B, C, D)= \sum (7,8,9,10,11,12,13,14,15)

 $y (A, B, C, D) = \sum (0,2,3,4,5,6,7,8,10,11,15)$

 $z(A, B, C, D) = \sum (1,2,8,12,13)$

3. Design sequential circuit specified by the following state diagram using T flip-flops.

(10)

- 4. List two major characteristics of digital computer. Represent -6 (negative six) using 8 bits in signed magnitude, signed-1's-complement and signed-2's-complement respectively. Represent decimal number 4673 in a) octal, and b) BCD. (1+2+2)
- 5. Where is CMOS suitable to use? Define Power dissipation. Show that the positive logic NAND gate is a negative logic NOR gate and vice versa. (1+1+3)
- 6. Simplify the following function and implement them with two level NOR gate circuit, F(w, x, y, z) = wx' + y'z' + w'yz' (5)

CSc.111-2077 ❖

7. Design a full subtractor circuit with three inputs x, y, B_{in} and two outputs Diff and B_{out} . The circuit subtracts x-y- B_{in} where B_{in} is the input borrow, B_{out} is the output borrow, and Diff is the difference.

(5)

8. Design 4-bit even parity generator.

(5)

- 9. What is the difference between a serial and parallel transfer? Explain how to convert serial data to parallel and parallel data to serial. What type of register is needed? (1+3+1)
- 10. Explain negative-edge triggered D flip flop with necessary logic diagram and truth table. (5)
- 11. Illustrate the use of Binary ripple counter and BCD ripple counter. (2.5+2.5)
- 12. Write Short notes on (Any two)

(2x2.5)

- a) RTL
- b) State Reduction
- c) POS