CSC111-2081(Old)☆

Tribhuvan University Institute of Science and Technology 2081

¢

Bachelor Level / First Year/ First Semester/ Science Computer Science and Information Technology (CSC 111) (Digital Logic) (OLD COURSE)

Full Marks: 60 Pass Marks: 24 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt any TWO questions.

Section A

Atten	npt any TWO questions.	$(2 \times 10 = 20)$
1.	Describe asynchronous counter. Explain binary ripple counter.	[2+8]
2.	Implement $F = \Sigma(0, 2, 3, 5, 6)$ using a) Decoder	[4+6]
	b) PAL	
3.	Design a combinational circuit that accepts a three bit number and generates an equal to the square of the input number.	output number [10]
A 44	Section B	* ³
Attem	ipt any EIGHT questions.	(8×5=40)
4.	a) (145.02) ₁₀ to binary	[2.5+2.5]
	b) (987) ₁₆ to decimal	
-		
5.	Design 4 bit even parity generator.	[5]
6.	How parallel data is converted to serial data and parallel data to serial? Explain required register.	with respect to [5]
7.	Explain T flip flop. How is it different from SR flip flop?	[4+1]
8.	Define basic gates, derived gates and universal gates. Illustrate the use of univer-	sal gates. [3+2]
9.	Simplify the following using k-map where d stands for don't care. $F(A, B, C, D) = \sum_{n=1}^{\infty} (0, 1, 2, 8, 9, 12, 12)$	[5]
	$d (A, B, C, D) = \Sigma (10, 11, 14, 15)$	а ж. е
10	. Design a half subtractor circuit using only NAND gates.	[5]
11	. Differentiate between multiplexer and demultiplexer.	[5]
12.	Write short notes on	[2.5+2.5]
	a) State diagram	

b) Signed binary number

1