Tribhuvan University Institute of Science and Technology 2077

BScCSIT Level/First Semester Mathematics[MTH 112] Calculus

Full Marks: 80

Pass Marks: 32 Time 3 Hrs.

Candidates are required to give their answers in their own words as far as practicable.

Group A $(10 \times 3 = 30)$

Attempt any THREE questions.

- 1. (a) If $f(x) = x^2$ then find $\frac{f(2+h)-f(2)}{h}$. [2]
 - (b) (a) Dry air is moving upward. If the ground temperature is 20° and the temperature at a height of 1km is 10°C, express the temperature T in °C as a function of the height h (in kilometers), assuming that a linear model is appropriate. (b) Draw the graph of the function in part (a). What does the slope represent? (c) What is the temperature at a height of 2km?
 - (c) Find the equation of the tangent to the parabola $y = x^2 + x + 1$ at (0,1).
- 2. (a) A farmer has 2000 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area? [5]
 - (b) Sketch the curve [3]

$$y = \frac{1}{x - 3}$$

3. (a) Show that the $\int_1^\infty \frac{1}{x^2}$ converges and $\int_1^\infty \frac{1}{x}$ diverges. [2]

- (b) If $f(x,y) = xy/(x^2+y^2)$, does f(x,y) exist, as $(x,y) \to (0,0)$? [3]
- (c) A particle moves in a straight line and has acceleration given by $a(t) = 6t^2 + 1$. Its initial velocity is $4m/\sec$ and its initial displacement is s(0) = 5cm. Find its position function s(t). [5]
- 4. (a) Evaluate [5]

$$\int_{-3}^{2} \int_{0}^{\pi/2} (y + y^{2} \cos x) dx dy$$

(b) Find the Maclaurin's series for $\cos x$ and prove that it represents $\cos x$ for all x. [5]

Group B $(10 \times 5 = 50)$

Attempt any TEN questions.

- 5. If $f(x) = x^2 1$, g(x) = 2x + 1, find $f \circ g$ and $g \circ f$ and domain of $f \circ g$.
- 6. Define continuity of a function at a point x = a. Show that the function $f(x) = \sqrt{1 x^2}$ is continuous on the interval [-1, 1].
- 7. State Rolle's theorem and verify the Rolle's theorem for $f(x) = x^3 x^2 6x + 2$ in [0, 3].
- 8. Find the third approximation x_3 to the root of the equation $f(x) = x^3 2x 7$, setting $x_1 = 2$.
- 9. Find the derivative of $\mathbf{r}(t) = (1+t^2)\mathbf{i} te^{-t}\mathbf{j} + \sin 2t\mathbf{k}$ and find the unit tangent vector at t = 0.
- 10. Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.
- 11. Solve: y'' + y' = 0, y(0) = 5, $y(\pi/4) = 3$
- 12. Show that the series $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$ converges.
- 13. Find a vector perpendicular to the plane that passes through the points: P(1,4,6), Q(-2,5,-1) and R(1,-1,1)
- 14. Find the partial derivative of $f(x,y) = x^3 + 2x^2y^3 3y^2 + x + y$, at (2,1).
- 15. Find the local maximum and minimum values, saddle points of $f(x, y) = x^4 + y^4 4xy + 1$.