Tribhuvan University

Institute of Science and Technology

2081

Bachelor Level / First Year/ First Semester/ Science Full Marks: 80 Computer Science and Information Technology (MTH 112) Pass Marks: 32 (Mathematics I) Time: 3 hours. (OLD COURSE) Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks. **Section A** Attempt any THREE questions. [3×10=30] 1. (a) If $f(x) = x^2$, $g(x) = \sqrt{x}$, then find (fog)(-3) and (gof)(-3). (b) Evaluate: $\lim_{x\to 0} \frac{2-\sqrt{x+4}}{x}$. [5] [5] 2. (a) Find the derivative of $y = \frac{x}{x^3 + 2}$. [5] (b) Estimate the area between the parabola $y = x^2$ and the line y = x. [5] 3. (a) Verify the Mean value theorem for the function $f(x) = x^2 + 3x$ in $x \in [1,3]$. [5] (b) Define initial value problem. Solve the equation xy' + y = x, y(1) = 0. |1+4|4. (a) Find the maximum and minimum values of the function $f(x) = 3 - 2x^2$ for [-1, 2]. What is the slope of the graph y = f(x) at these points? (b) Find $\vec{a}.\vec{b}$ and $\vec{a} \times \vec{b}$, where $\vec{a} = 2\vec{i} + 3\vec{j} - 2\vec{k}$ and $\vec{b} = -\vec{i} + 2\vec{j} - 3\vec{k}$. [5] **Section B** Attempt any TEN questions [10×5=50] 5. Verify Rolle's theorem $f(x) = x^2 + 1$ in $x \in [-1, 1]$. [5] 6. Find the Maclaurin series expansion of $\ln x$. [5] 7. If $f(x) = x^3 - 2$, then find f(-2), f(2), f(0), f(-1) and f(a). 5 8. In which domain the function $h(x) = \sin x^2$ is continuous? Discuss. [5] 9. Evaluate: $\int_0^1 \frac{x}{\sqrt{1-x^2}} dx.$ [5] 10. Sketch the curve $f(x) = 2x - x^2$. 5 11. Find the solution of y'' + 4y' + 4y = 0. [5] 12. Test whether the sequence $a_n = \frac{n}{\sqrt{9+n}}$ diverges or converges. 5

MTH112-2081(OLD)☆

- 13. Evaluate the limit by using L'Hospital rule $\lim_{x\to 2} \frac{x^4 16}{x^3 8}$ [5]
- 14. Find the second order partial derivatives f_{xx} , f_{xy} and f_{yy} of $f(x,y) = x^4 + xy^3 2x^3$.
- 15. Find the length of the arc of the semi-cubical parabola $y^2 = x^3$ between the points (1,1) and (4,8).