Digital System Design

Course Title: Digital System Design **Course No:** CSC417 **Nature of the Course:** Theory + Lab **Semester:** VII **Full Marks:** 60 + 20 + 20 **Pass Marks:** 24 + 8 + 8 **Credit Hrs:** 3

Course Description:

This course contains the introductory part of combinational Logic along with the clear concepts of K-Maps and Quine- Mc Cluskey Method. It also introduces sequential networks with flip flops and FSM. Another concept includes FPGA and VHDL and also testing and verification.

Course Objective:

The course objective is to provide ample knowledge on digital design process and to enhance the knowledge of hardware design in real scenarios.

Course Content:

Unit 1	Introduction of logic design, Digital System and Integration, Electronic	5Hrs
	Design Automation, IC Manufacturing, Logic Families, IC Design	
	Techniques, IC characteristics: fan-out, power dissipation, propagation	
	delay, and noise margin of TTL and CMOS integrated circuit logic devices	
Unit 2	Review of Boolean Algebra and Combinational Logic, Canonical Form,	4 Hrs.
	Shannon's Expansion, Minterms, Maxterms, Prime Implication	
Unit 3	Combinational Network Design: K - Map, Synthesis and Minimization	5 Hrs.
	with K - Maps (AND - OR, OR-AND, NAND-NAND, NOR-NOR),	
	Standard Combinational Networks	
Unit 4	Quine- Mc Cluskey Method, Minimization of Boolean expression with	7 Hrs.
	Quine-Mc Cluskey method, PROMs and EPROMs, Programmable Array	
	Logic (PAL), Programmed Logic Array (PLA), Gate Arrays, Programmable	
	Gate Array, Full Custom Design	
Unit 5	Sequential Networks: Transition from combinational to sequential network,	8 Hrs.
	Direct command flip flop, Initialization of sequential network, Level	
	Enabled Flip-Flops, Synchronization of sequential networks, Edge-triggered	
	Flip Flops, Synchronous and Asynchronous Signals	
Unit 6	Sequential Networks as Finite State Machines: Standard Models,	6 Hrs.
	Realization with ASM Diagrams, Synthesis of Synchronous FSM, Time	

	Behavior of Synchronous FSM, Design of input forming, Logic and Output	
	Forming Logic of state machine.	
Unit 7	Field Programmable Gate Arrays (FPGA), VHDL and its use in	4 Hrs.
	programmable logic devices (PLDs) like FPGA	
Unit 8	Testing and Verification, Testing Logic Circuits, Combinational gate	6 Hrs.
	testing, Combinational network testing, Sequential Testing, Test vector	
	generation, fault, fault model and fault detection, SA0, SA1, Design for	
	Testability	

Laboratory Works:

Laboratory Exercise should cover the implementation of combinational and sequential circuits, FSM, FPGA and VHDL. Testing and verification of circuits.

Project Work:

Design a sample of tool kit by using the design concepts of the course.

Reference Books:

- 1. Giuliano Donzellini, Luca Oneto, Domenico Ponta, Davide Anguita, Introduction to Digital System Design, Springer
- 2. Wolf, Wayne, Modern VLSI Design-System on Silicon, Third Edition, Pearson
- 3. Comer, David J. Digital Logic State Machine Design, Third Edition, Oxford University Press
- 4. Ashenden, Peter J, The Student's Guide to VHDL, Morgan Kaufman