Tribhuvan University Institute of Science and Technology 2080

Bachelor Level / First Year /Second Semester/Science Computer Science and Information Technology (MTH. 155) (Linear Algebra) Full Marks: 80 Pass Marks: 32 Time: 3 hours.

(VERY OLD COURSE)

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt all questions:

 $Group A \qquad (10 \times 2 = 20)$

- 1. What is system of linear equation? When the system is consistent and inconsistent?
- 2. Show that the vectors (1, 2) and (3, 4) are linearly independent.
- 3. Define invertible matrix with an example.
- 4. Prove that $(A + B)^T = A^T + B^T$, where A and B are matrices whose sizes arre appropriate for the above mentioned matrix.
- 5. Using Carmer's rule to solve the equations 3x + y = 5, 2x + 3y = 8.
- 6. Define vector space with an example.
- 7. Let $A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$ and let $u = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$, show that u belongs to the null space of A.
- 8. Determine whether the pair of vectors $u = \begin{bmatrix} 12 \\ 3 \\ -7 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ -5 \\ 3 \end{bmatrix}$ are orthogonal or not.
- 9. Find the inverse matrix of $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$.
- 10. Consider a basis $\{b_1, b_2\}$ for \mathbb{R}^2 where $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, suppose an x in \mathbb{R}^2 has the coordinate vector $[x]_B$. Find x.

Group B (5×4=20)

- 11. Let $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, u = (1, 0, -2) and v = (1, 5, -2). If $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x) = Ax, find T(u) and T(v).
- 12. Let $A = \begin{bmatrix} 5 & 4 \\ 3 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 5 \\ -6 & 1 \end{bmatrix}$. Find AB and BA, if possible.
- 13. If v_1 and v_2 are the vectors of a vectors space V and W= Span $\{v_1, v_2\}$, then show that W is a subspace of V.
- 14. Find the eigenvalues of $\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$.

15. Find an orthogonal projhection of x onto u where x=(7, 6) and u=(4,2).

OR

Show that $v_1 = (3, 1, 1)$, $v_2 = (-1, 2, 1)$ and $v_3 = (-1, -4, 7)$ are the orthogonal bases of \mathbb{R}^3 .

$$\frac{\mathbf{Group C}}{\mathbf{C}}$$

16. Define basis and dimension of the vector space. Find the basis and dimension of the

subspace H=
$$\left\{ \begin{bmatrix} a - 36 + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}.$$

OR

Define $T\colon P_2\to \mathbb{R}^2 defined by \ T(p)=\begin{bmatrix}p(0)\\p(2)\end{bmatrix}$. Then

- (a) Find the image of T of $p(t) = 3 + 5t + 7t^2$).
- (b) Determine whether T is a linear transformation or not.

17. Let a = (1, -2, 5), b = (2, 5, 4) and c = (7, 4, -3) are the vectors. Determine whether c can be generated as a linear combination of a and b. That is, determine x_1 and x_2 exist such that $x_1a+x_2b=0$ has solution, find it.

18. Compute the multiplication of partitioned matrix for $A = \begin{bmatrix} 1 & -3 & 2 & : & 1 & -51 \\ 2 & 3 & -2 & : & 3 & -1 \\ ... & ... & : & ... & ... \\ 0 & 4 & 2 & : & 1 & 7 \end{bmatrix}$ and

$$B = \begin{bmatrix} 1 & 2 \\ 6 & 5 \\ 1 & 5 \\ \dots & \dots \\ 3 & 5 \\ 2 & 3 \end{bmatrix}$$

19. Diagonalize the matrix $\begin{bmatrix} 7 & 4 & 6 \\ 2 & 5 & 0 \\ -2 & -2 & 3 \end{bmatrix}$, if possible.

20. Find the least-square solution of Ax= b for $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$.

Let $x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Construct an orthogonal basis of \mathbb{R}^3 .