## Tribhuvan University Institute of Science and Technology 2081

\*

Bachelor Level / First Year/ Second Semester/ Science

Full Marks: 80 Pass Marks: 32

Computer Science and Information Technology (MTH 163) (Mathematics II)

Time: 3 hours.

## (OLD COURSE)

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

$$(3 \times 10 = 30).$$

Attempt any **THREE** questions:

1. What is a system of linear equations? When the system is consistent? Determine  $x_1, x_2, x_3$  if the system

$$x_1 - 2x_2 + x_3 = 3$$
  
 $2x_1 + 3x_2 - x_3 = 5$   
 $3x_1 + x_2 + 2x_3 = 4$  is consistent.

2. (a) Find the standard matrix A for the dilation transformation T(x) = 2x for  $x \in \mathbb{R}^2$ .

5

(b) Prove that a map  $T: \mathbb{R}^2 \to \mathbb{R}$  defined by T(x,y) = x - y is linear.

[5]

3. Find a least square solution of 
$$Ax = b$$
 where  $A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$ ,  $b = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$ . [10]

4. What do you mean by LU factorization? Find LU factorization of  $\begin{bmatrix} 1 & 2 & 5 \\ 6 & 3 & 8 \\ 5 & 2 & 2 \end{bmatrix}$ . [2+8]

Group B

$$(10 \times 5 = 50).$$

Attempt any TEN questions:

5. Define inverse of a matrix. Find the inverse of  $A = \begin{bmatrix} 5 & 10 \\ 4 & 7 \end{bmatrix}$ . [1+4]

6. When two column vectors in  $\mathbb{R}^2$  are equal? Give an example. Compute -u+2v and

$$3v - 4u$$
, where  $u = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$ ,  $v = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$ .  $[1+1+1+2]$ 

## MTH163-2081☆

7. Evaluate: 
$$\begin{vmatrix} 2 & 5 & 4 & 1 \\ 4 & 7 & 6 & 2 \\ 6 & -2 & -4 & 0 \\ -6 & 7 & 7 & 0 \end{vmatrix}$$
. [5]

8. Find the eigenvalue and eigenvectors of 
$$\begin{bmatrix} 7 & -1 \\ 4 & 3 \end{bmatrix}$$
. [2+3]

9. Let 
$$u = (2, -2, 0, 1)$$
. Find a unit vector  $v$  in the same direction as  $u$ . [5]

10. Find the basis for Null A and column A for the matrix 
$$A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 4 & -3 & -2 \\ 1 & -1 & 2 & 3 \end{bmatrix}$$
. [5]

11. Compute 
$$\frac{u.v}{u.u}$$
 and  $\left(\frac{u.v}{v.v}\right)u$  if  $u = \begin{bmatrix} 2\\ -3\\ 2 \end{bmatrix}$ ,  $v = \begin{bmatrix} 3\\ -1\\ 1 \end{bmatrix}$ . [2+3]

12. Show that 
$$\{t, 1-t, 1+t-t^2\}$$
 is a basis for  $\mathbb{P}_2$ . [5]

13. Verify that 
$$1^k$$
,  $(-2)^k$ ,  $3^k$  are linearly independent signals. [5]

14. Define group. Prove that 
$$(\mathbb{Z}, +)$$
 forms a group. [2+3]

15. Compute the product (11)(-4)of the ring 
$$\mathbb{Z}_{15}$$
. [5]