

Bachelor Level / Second Year/ Third Semester/ Science Computer Science and Information Technology (CSC 207) (Numerical Method)

Full Marks: 60 Pass Marks: 24 Time: 3 hours.

(OLD COURSE)

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Section A

Attempt any TWO questions:

 $(2 \times 10 = 20)$

- 1. What are the different types of errors? Write an algorithm and a C-Program to obtain the roots of non-linear equation using Newton Raphson method. (2+8)
- 2. Define ordinary differential equation. Why numerical differential equation is required? Derive Newton forward difference formula with suitable diagram. (2+1+7)
- 3. Solve the following ordinary differential equation using shooting method. y'' + xy' xy = 2x, with boundary conditions y(0) = 1; and y(2) = 9

Section B

Attempt any EIGHT questions:

 $(8 \times 5 = 40)$

- 4. How would you choose two initial values that are required for Bisection method? Use Bisection method to estimate the root of the equation $\log x \cos x = 0$. (1+4)
- 5. Solve the following equations using Gauss Elimination Method with partial pivoting. (5) x + 2y + 3z = 52x + 8y + 22z = 63x + 22y + 82z = -10
- 6. Fit a second order polynomial to the data in the table below:

(5)

1	2	3	4	5
F(x) 2	6	12	20	30

7. Estimate f(3) from the following data using cubic spline interpolation.

(5)

X	1	2.5	4	5.7
F(x)	-2.0	4.2	14.4	31.2

- 8. Use Gauss Legendre three-point formula to evaluate the integral: $I = \int_2^4 (x^4 + 4) dx$. (5)
- 9. Solve the following differential equation $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1 for x = 0.2 (h = 0.1) using Euler's Method.

CSC 207-2081(Old) ☆

10. From the following table find the value of X, correct to 3-decimal places for Which Y is minimum and find this value of Y.

X	0.60	0.65	0.70	0.75
Y	0.6221	0.6155	0.6138	0.6170

11. Find the Eigen values and Eigen vectors of the Matrix:

$$A = \begin{pmatrix} 48 & 8 \\ 6 & 26 \end{pmatrix}$$

12. The steady- state two-dimensional heat flow in a metal plate is defined by:

$$\frac{\delta^2 T}{\delta x^2} + \frac{\delta^2 T}{\delta y^2} = 0$$

A steel plate of size $30 \times 30 \text{cm}$ is given. Two adjacent sides are placed at 100° and other side held at 0° . Find the temperature at interior points, assuming the grid size of $10 \times 10 \text{cm}$.