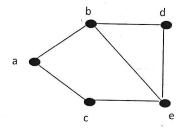
Tribhuvan University Institute of Science and Technology 2081

X

Bachelor Level / Second Year/ Third Semester/ Science Computer Science and Information Technology (CSC 206) (Data Structure and Algorithms)

Full Marks: 60 Pass Marks: 24 Time: 3 hours.

(OLD COURSE)


Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Section A

Attempt any TWO questions.

 $(2 \times 10 = 20)$

- 1. Explain stack as an ADT. Explain algorithm to convert an infix expression to postfix using stack? Use this algorithm to convert (A+B) * (C-D) to postfix expression.
- 2. What is linked list? Compare singly linked list with doubly linked list. How do you insert and delete nodes in a singly linked list? (2+3+5)
- 3. Explain breadth first search (BFS) algorithm. Show each step of this algorithm to traverse the graph given below. (3+7)

Section B			
A	ttem	pt any EIGHT questions.	$(8 \times 5 = 40)$
	4.	What is asymptotic analysis? Explain big oh notation with example.	(2+3)
	5.	Explain primitive queue operations. What are different applications of queue?	(2.5 + 2.5)
	6.	Define recursion. Compare recursion with iteration. Write a recursive function to impler	
	7.	Trace bubble sort algorithm with array of numbers 37, 88, 16, 55, 10, 32, 23, 66, and 17	(1+2+2) . (5)
	8.	Define hashing. Explain collision and collision resolution in hashing.	(2+3)
	9.	What is binary tree? Explain binary search tree with example.	(1.5 + 3.5)
	10.	Write a program to implement binary search.	(5)
	11.	Define spanning tree. Explain minimum spanning tree with example.	(1.5+3.5)
	12.	Write short notes on: a) Abstract data type b) Stack as linked list	$(2 \times 2.5 = 5)$