Tribhuvan University Institute of Science and Technology 2076

*

Bachelor Level / Second Year/ Forth Semester/ Science
Computer Science and Information Technology (CSC 257)

Full Marks: 60 Pass Marks: 24

(Theory of Computation)

Time: 3 hours.

New Course

Candidates are required to give their answers in their own words as for as practicable. All figures in the margin indicate full marks.

Attempt all the questions.

Section A

Long Answer Questions

Attempt any Two questions

(2x 10=20)

- Define the NFA with ε-transitions and ε-closure of a state. Show that for every regular expression r, representating a language L, there is ε-NFA accepting the same language. Also convert regular expression (a+b)*ab* into equivalent Finite Automata. (2+6+2)
- 2. How can you define the language acceted by a PDA? Explain how a PDA accepting language by empty stack is converted into an equivalent PDA accepting by final state and vice-versa.

(2+4+4)

3. Define a Turing machine. Construct a TM that accept $L = \{ wcw^R \mid w \in \{0,1\} \text{ and } c \text{ is } \epsilon \text{ or } 0 \text{ or } 1.$ Show that string 0110 is accepted by this TM with sequence of Instantaneous Description (ID). (2+6+2)

Section B

Short Answer Questions

Attempt any Eight questions.

(8x5=40)

- 4. Give the formal definition of DFA. Construct a DFA accepting all strings of {0,1} with even number of 0s and even number of 1s. (2+3)
- Define Chomsky Normal Form and Greibach Normal Form in reference to CFG. Give a suitable example of each.
- 6. Give the regular expressions for following language over alphabet {0,1}

(2.5+2.5)

- a. Set of all strings with 2nd symbol from right is 1.
- b. Set of all strings starting with 00 or 11 and ending with 10 or 01.
- 7. Show that language $L = \{0^m1^m \mid m \ge 1\}$ is not a regular language.

(5)

8. Describe the Turing machines with multiple tape, multiple track and storage in state. (5)

- 9. Construct a NFA accepting language of {0,1} with each string ending with 01 and convert it into equivalent DFA.
- 10.Construct a PDA accepting language over { 0,1} representing strings with equal no of 0s and 1s. Show by sequence of IDs that 0101 is accepted by this PDA. (3+2)
- 11. Define complexity of a Turing machine. Explain about big Oh, big Omega and big Theta notation used for complexity measurement. (1+4)
- 12. What do you mean by tractable and intractable problems? Explain with reference to TM. (5)